11: Kepler's Third Law (2024)

  1. Last updated
  2. Save as PDF
  • Page ID
    24351
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vectorC}[1]{\textbf{#1}}\)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}}\)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}\)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    A decade after announcing his First and Second Laws of Planetary Motion in Astronomica Nova, Kepler published Harmonia Mundi ("The Harmony of the World"), in which he put forth his final and favorite rule:

    Kepler's Third Law

    The square of the period of a planet's orbit is proportional to the cube of its semimajor axis.

    It turns out that this relationship will serve as the basis for our attempts to derive stellar masses from observations of binary stars ... but notice how the Third Law itself never mentions mass!

    Let's check to see just how well Kepler's Third Law works. I'll do the first example:

    \[\begin{align*} &\text{Earth: }\\[4pt]&\text{period} &P &= 1 \text{ year}\\[4pt] &\text{semimajor axis} &a &= 1 \text{ AU}\end{align*}\]

    \[\begin{align*} P^2 &= \text{ (const) } a^3\\[4pt] \rightarrow \text{ const } &= 1 \text{ for this choice of units}\end{align*}\]

    Now, you verify that if you continue to use the same units -- period in years, semimajor axis in AU -- these other orbits also satisfy the same equation:

    \[P = 1\cdot a^3\]

    • Mars' orbit
    • Jupiter's orbit
    • Pluto's orbit
    • the Moon's orbit

    Hmmmm.... this Third Law doesn't seem to work all the time, does it? Or is there something we're missing?

    Just what is that constant, really?

    It turns out that the constant in Kepler's Third Law depends on the total mass of the two bodies involved. Kepler himself, studying the motion of the planets around the Sun, always dealt with the 2-body system of Sun-plus-planet. The Sun is so much more massive than any of the planets in the Solar System that the mass of Sun-plus-planet is almost the same as the mass of the Sun by itself. Thus, the constant in Kepler's application of his Third Law was, for practical purposes, always the same.

    But in the case of the Moon's orbit around the Earth, the total mass of the two bodies is much, much smaller than the mass of Sun-plus-planet; that means that the value of the constant of proportionality in Kepler's Third Law will also be different. On the other hand, if we compared the period and semimajor axis of the orbit of the Moon around the Earth to the orbit of a communications satellite around the Earth, we would once again have (almost) the same total mass in each case; and thus we would end up with the same relationship between period-squared and semimajor-axis-cubed.

    To make a long story short -- we'll tell the whole story later, including a derivation of the formula below from Newton's Law of Gravitation -- one can write Kepler's Third Law in the following way:

    \[P^{2}=\frac{4 \pi^{2}}{k^{2}\left(M_{\mathrm{Sun}}+M_{\mathrm{Earth}}\right)} a^{3}\]

    or

    \[P^{2}=\frac{4 \pi^{2}}{k^{2}\left(M_{\text {tot }}\right)} a^{3}\]

    The constant k in the equations above is known as the Gaussian gravitational constant. If we set up a system of units with

    • period P in days
    • semimajor axis a in AU
    • mass \(\mathbf{M_{tot}}\) in solar masses

    then we can determine k very precisely and very simply: just count the days in a year! Then we can simply turn Kepler's Third Law around to solve for the value of k:

    \[k^{2}=\frac{4 \pi^{2}}{P^{2}\left(M_{\text {tot }}\right)} a^{3}\]

    Exercise \(\PageIndex{1}\)

    What is the value of the Gaussian gravitational constant k?

    The key point here is that the only measured quantity we need to find k is time: the period of the Earth's orbit around the Sun. Now, it's not quite so easy as it sounds, but it can be done without too much trouble. Moreover, because we can average over many, many, many years, we can determine the length of the year very accurately -- to many significant figures. Therefore, we can also determine the value of k to many significant figures. If all we want to do is calculate the orbits of objects around the Sun, then k is all we need; and with a very accurate value of k, we can calculate very accurate planetary orbits.

    For example, it was this constant k that Adams and Leverrier used in their computations of the as-yet-unknown planet VIII, aka Neptune.

    At this point, you may be thinking, "Hey, wait a minute -- isn't that constant k just another way of writing the Newtonian Constant of Universal Gravitation, G?" Well, the answer is yes, and no:

    • Yes, the two constants are closely related
    • No, they don't stand for EXACTLY the same thing

    The Gaussian constant, k, is defined in terms of the Earth's orbit around the Sun. The Newtonian constant, G, is defined in terms of the force between two two masses separated by some fixed distance. In order to measure k, all you need to do is count days; in order to measure G, you need to know very precisely the masses, separation, and forces between test objects in a laboratory. The Gaussian constant is obviously much easier to determine. Look at a sample pair of values from recent compilations:

    \[\begin{align*} k &= 0.01720209895 & &\text{(10 significant digits)}\\[4pt] G &= 6.6742 \times 10^{-11} & &\text{(5 significant digits)}\end{align*}\]

    Physicists are still arguing over the fifth digit of G!

    Applying Kepler's Third Law to stars

    If the laws of physics are the same everywhere in the universe, as we think they are, then we can use Kepler's Third Law to measure the mass of a distant star around which a distant planet orbits. All we need to do is measure

    • the period of the orbit, in days
    • the semimajor axis of the orbit, in AU

    and then we can determine the total mass of the system, star plus planet, in units of the solar mass. Sounds pretty simple, doesn't it?

    But how sensitive will our result be to small errors of measurement? Suppose we measure the following quantities for a planet orbiting some star:

    • period of the orbit is 900 days, to a precision of 1 percent
    • apparent angular size of the orbit is 0.10 arcseconds, to a precision of 5 percent
    • distance to the star is 20 parsecs, to a precision of 10 percent

    What is the mass of the star in this system? What is the uncertainty in the mass? Express your result in absolute terms (solar masses), and in percentage terms.

    11: Kepler's Third Law (2024)
    Top Articles
    How to Make Kombucha 101: Kombucha Recipe and Brewing Basics
    Clean Eating Holiday Butternut Cranberry Bake Recipe
    Spasa Parish
    Rentals for rent in Maastricht
    159R Bus Schedule Pdf
    Sallisaw Bin Store
    Black Adam Showtimes Near Maya Cinemas Delano
    Espn Transfer Portal Basketball
    Pollen Levels Richmond
    11 Best Sites Like The Chive For Funny Pictures and Memes
    Things to do in Wichita Falls on weekends 12-15 September
    Momokun Leaked Controversy - Champion Magazine - Online Magazine
    Maine Coon Craigslist
    How Nora Fatehi Became A Dancing Sensation In Bollywood 
    ‘An affront to the memories of British sailors’: the lies that sank Hollywood’s sub thriller U-571
    Tyreek Hill admits some regrets but calls for officer who restrained him to be fired | CNN
    Haverhill, MA Obituaries | Driscoll Funeral Home and Cremation Service
    Rogers Breece Obituaries
    Ems Isd Skyward Family Access
    Elektrische Arbeit W (Kilowattstunden kWh Strompreis Berechnen Berechnung)
    Omni Id Portal Waconia
    Kellifans.com
    Banned in NYC: Airbnb One Year Later
    Four-Legged Friday: Meet Tuscaloosa's Adoptable All-Stars Cub & Pickle
    Model Center Jasmin
    Ice Dodo Unblocked 76
    Is Slatt Offensive
    Labcorp Locations Near Me
    Storm Prediction Center Convective Outlook
    Experience the Convenience of Po Box 790010 St Louis Mo
    Fungal Symbiote Terraria
    modelo julia - PLAYBOARD
    Poker News Views Gossip
    Abby's Caribbean Cafe
    Joanna Gaines Reveals Who Bought the 'Fixer Upper' Lake House and Her Favorite Features of the Milestone Project
    Tri-State Dog Racing Results
    Navy Qrs Supervisor Answers
    Trade Chart Dave Richard
    Lincoln Financial Field Section 110
    Free Stuff Craigslist Roanoke Va
    Wi Dept Of Regulation & Licensing
    Pick N Pull Near Me [Locator Map + Guide + FAQ]
    Crystal Westbrooks Nipple
    Ice Hockey Dboard
    Über 60 Prozent Rabatt auf E-Bikes: Aldi reduziert sämtliche Pedelecs stark im Preis - nur noch für kurze Zeit
    Wie blocke ich einen Bot aus Boardman/USA - sellerforum.de
    Infinity Pool Showtimes Near Maya Cinemas Bakersfield
    Dermpathdiagnostics Com Pay Invoice
    How To Use Price Chopper Points At Quiktrip
    Maria Butina Bikini
    Busted Newspaper Zapata Tx
    Latest Posts
    Article information

    Author: Rev. Porsche Oberbrunner

    Last Updated:

    Views: 6261

    Rating: 4.2 / 5 (73 voted)

    Reviews: 80% of readers found this page helpful

    Author information

    Name: Rev. Porsche Oberbrunner

    Birthday: 1994-06-25

    Address: Suite 153 582 Lubowitz Walks, Port Alfredoborough, IN 72879-2838

    Phone: +128413562823324

    Job: IT Strategist

    Hobby: Video gaming, Basketball, Web surfing, Book restoration, Jogging, Shooting, Fishing

    Introduction: My name is Rev. Porsche Oberbrunner, I am a zany, graceful, talented, witty, determined, shiny, enchanting person who loves writing and wants to share my knowledge and understanding with you.